Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration.
نویسندگان
چکیده
Buffering of intracellular Ca2+ transients in human neutrophils leads to reduced motility due to defective uropod detachment on fibronectin and vitronectin-coated surfaces. Since one potential target of a rise in [Ca2+]i is the activation of myosin II, we characterized the role of myosin II during motility. Treatment of neutrophils with a myosin inhibitor (2,3-butanedione monoxime), or myosin light chain kinase inhibitors (ML-7, ML-9, or KT5926) resulted in impaired uropod retraction and a dose-dependent decrease in chemokinesis following stimulation with N-formyl-Met-Leu-Phe (fMLP). Treatment with ML-9 resulted in a redistribution of F-actin and talin to the non-retracted uropods, mimicking the redistribution observed during [Ca2+]i buffering. Impairment of uropod retraction and redistribution of F-actin and talin by myosin II inhibition was only observed on adhesive substrates such as fibronectin and not on poorly adhesive substrates such as human serum-coated glass. At higher concentrations of ML-9, cell polarization was inhibited and pseudopod extension occurred radially. Using an antibody specific for serine 19-phosphorylated regulatory light chain of myosin II, regions of activated myosin II were found at the leading edge as well as the uropod in motile fMLP-stimulated cells. [Ca2+]i depletion caused a 50% decrease in the level of serine 19-phosphorylated myosin II suggesting that activation of myosin II by intracellular Ca2+ transients may be an essential step in establishing a polarized pseudopod and providing the force required for uropod retraction during PMN motility on adhesive surfaces.
منابع مشابه
Filamin-A Regulates Neutrophil Uropod Retraction through RhoA during Chemotaxis
Filamin-A (FLNa) has been shown to be a key cross-linker of actin filaments in the leading edge of a motile melanoma cell line, however its role in neutrophils undergoing chemotaxis is unknown. Using a murine transgenic model in which FLNa is selectively deleted in granulocytes, we report that, while neutrophils lacking FLNa show normal polarization and pseudopod extension, they exhibit obvious...
متن کاملFlotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment
We studied the function of plasma membrane microdomains defined by the proteins flotillin 1 and flotillin 2 in uropod formation and neutrophil chemotaxis. Flotillins become concentrated in the uropod of neutrophils after exposure to chemoattractants such as N-formyl-Met-Leu-Phe (fMLP). Here, we show that mice lacking flotillin 1 do not have flotillin microdomains, and that recruitment of neutro...
متن کاملSpatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration.
Neutrophil motility is crucial to effective host defenses against microorganisms. While uropod retraction is a critical step in the migration of neutrophils, the underlying molecular mechanism is not well understood. Here, we show that inhibition of the Rho small GTPase with C3 exoenzyme prevented the retraction of trailing uropods, indicating that the process of rear release is mediated by a R...
متن کاملMicrotubule asymmetry during neutrophil polarization and migration.
The development of cell polarity in response to chemoattractant stimulation in human polymorphonuclear neutrophils (PMNs) is characterized by the rapid conversion from round to polarized morphology with a leading lamellipod at the front and a uropod at the rear. During PMN polarization, the microtubule (MT) array undergoes a dramatic reorientation toward the uropod that is maintained during mot...
متن کاملRho/ROCK and myosin II control the polarized distribution of endocytic clathrin structures at the uropod of moving T lymphocytes.
We have examined the spatio-temporal dynamics of clathrin-mediated endocytosis (CME) during T lymphocyte polarization and migration. Near the plasma membrane, we detected heterogeneous arrangements of GFP-clathrin that were clustered predominantly at the uropod; some diffraction limited spots ( approximately 200 nm) and a major population of larger clathrin structures (CSs) (300-800 nm). Membra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 113 ( Pt 7) شماره
صفحات -
تاریخ انتشار 2000